Python數(shù)據(jù)科學(xué):線性回歸
變量分析:
①相關(guān)分析:一個(gè)連續(xù)變量與一個(gè)連續(xù)變量間的關(guān)系。
②雙樣本t檢驗(yàn):一個(gè)二分分類變量與一個(gè)連續(xù)變量間的關(guān)系。
③方差分析:一個(gè)多分類分類變量與一個(gè)連續(xù)變量間的關(guān)系。
④卡方檢驗(yàn):一個(gè)二分分類變量或多分類分類變量與一個(gè)二分分類變量間的關(guān)系。
本次介紹:
線性回歸:多個(gè)連續(xù)變量與一個(gè)連續(xù)變量間的關(guān)系。
其中線性回歸分為簡單線性回歸和多元線性回歸。
/ 01 / 數(shù)據(jù)分析與數(shù)據(jù)挖掘
數(shù)據(jù)庫:一個(gè)存儲數(shù)據(jù)的工具。因?yàn)镻ython是內(nèi)存計(jì)算,難以處理幾十G的數(shù)據(jù),所以有時(shí)數(shù)據(jù)清洗需在數(shù)據(jù)庫中進(jìn)行。
統(tǒng)計(jì)學(xué):針對小數(shù)據(jù)的數(shù)據(jù)分析方法,比如對數(shù)據(jù)抽樣、描述性分析、結(jié)果檢驗(yàn)。
人工智能/機(jī)器學(xué)習(xí)/模式識別:神經(jīng)網(wǎng)絡(luò)算法,模仿人類神經(jīng)系統(tǒng)運(yùn)作,不僅可以通過訓(xùn)練數(shù)據(jù)進(jìn)行學(xué)習(xí),而且還能根據(jù)學(xué)習(xí)的結(jié)果對未知的數(shù)據(jù)進(jìn)行預(yù)測。
/ 02 / 回歸方程
01 簡單線性回歸
簡單線性回歸只有一個(gè)自變量與一個(gè)因變量。
含有的參數(shù)有「回歸系數(shù)」「截距」「擾動項(xiàng)」。
其中「擾動項(xiàng)」又稱「隨機(jī)誤差」,服從均值為0的正態(tài)分布。
線性回歸的因變量實(shí)際值與預(yù)測值之差稱為「殘差」。
線性回歸旨在使殘差平方和最小化。
下面以書中的案例,實(shí)現(xiàn)一個(gè)簡單線性回歸。
建立收入與月均信用卡支出的預(yù)測模型。
import numpy as np
import pandas as pd
import statsmodels.a(chǎn)pi as sm
import matplotlib.pyplot as plt
from statsmodels.formula.a(chǎn)pi import ols
# 消除pandas輸出省略號情況及換行情況
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
# 讀取數(shù)據(jù),skipinitialspace:忽略分隔符后的空白
df = pd.read_csv('creditcard_exp.csv', skipinitialspace=True)
print(df.head())
讀取數(shù)據(jù),數(shù)據(jù)如下。
對數(shù)據(jù)進(jìn)行相關(guān)性分析。
# 獲取信用卡有支出的行數(shù)據(jù)
exp = df[df['avg_exp'].notnull()].copy().iloc[:, 2:].drop('age2', axis=1)
# 獲取信用卡無支出的行數(shù)據(jù),NaN
exp_new = df[df['avg_exp'].isnull()].copy().iloc[:, 2:].drop('age2', axis=1)
# 描述性統(tǒng)計(jì)分析
exp.describe(include='all')
print(exp.describe(include='all'))
# 相關(guān)性分析
print(exp[['avg_exp', 'Age', 'Income', 'dist_h(yuǎn)ome_val']].corr(method='pearson'))
輸出結(jié)果。
發(fā)現(xiàn)收入(Income)和平均支出(avg_exp)相關(guān)性較大,值為0.674。
使用簡單線性回歸建立模型。
# 使用簡單線性回歸建立模型
lm_s = ols('avg_exp ~ Income', data=exp).fit()
print(lm_s.params)
# 輸出模型基本信息,回歸系數(shù)及檢驗(yàn)信息,其他模型診斷信息
print(lm_s.summary())
一元線性回歸系數(shù)的輸出結(jié)果如下。
從上可知,回歸系數(shù)值為97.73,截距值為258.05。
模型概況如下。
其中R值為0.454,P值接近于0,所以模型還是有一定參考意義的。
使用線性回歸模型測試訓(xùn)練數(shù)據(jù)集,得出其預(yù)測值及殘差。
# 生成的模型使用predict產(chǎn)生預(yù)測值,resid為訓(xùn)練數(shù)據(jù)集的殘差
print(pd.DataFrame([lm_s.predict(exp), lm_s.resid], index=['predict', 'resid']).T.head())
輸出結(jié)果,可與最開始讀取數(shù)據(jù)時(shí)輸出的結(jié)果對比一下。
使用模型測試預(yù)測數(shù)據(jù)集的結(jié)果。
# 對待預(yù)測數(shù)據(jù)集使用模型進(jìn)行預(yù)測
print(lm_s.predict(exp_new)[:5])
輸出結(jié)果。

發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個(gè)字
最新活動更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會
-
10月23日立即報(bào)名>> Works With 開發(fā)者大會深圳站
-
10月24日立即參評>> 【評選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評選
-
即日-11.25立即下載>>> 費(fèi)斯托白皮書《柔性:汽車生產(chǎn)未來的關(guān)鍵》
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會
-
12月18日立即報(bào)名>> 【線下會議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
推薦專題
-
10 大模型的盡頭是開源
- 1 特斯拉工人被故障機(jī)器人打成重傷,索賠3.6億
- 2 【行業(yè)深度研究】退居幕后四年后,張一鳴終于把算法公司變成AI公司?
- 3 人形機(jī)器人廠商,正在批量復(fù)刻宇樹G1
- 4 AI 時(shí)代,阿里云想當(dāng)“安卓” ,那誰是“蘋果”?
- 5 華為公布昇騰芯片三年計(jì)劃,自研HBM曝光
- 6 硬剛英偉達(dá)!華為發(fā)布全球最強(qiáng)算力超節(jié)點(diǎn)和集群
- 7 機(jī)器人9月大事件|3家國產(chǎn)機(jī)器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 8 谷歌“香蕉”爆火啟示:國產(chǎn)垂類AI的危機(jī)還是轉(zhuǎn)機(jī)?
- 9 00后華裔女生靠兩部AI電影狂賺7.8億人民幣,AI正式進(jìn)軍好萊塢
- 10 美光:AI Capex瘋投不止,終于要拉起存儲超級周期了?