人工智能(61)–AlphaGo淺析(1)
AlphaGo(阿爾法狗)戰(zhàn)勝了柯潔,人工智能贏了,贏家仍然是人類(lèi)!
之前介紹過(guò)深度強(qiáng)化學(xué)習(xí)DRL,其中一個(gè)最最經(jīng)典的應(yīng)用就是谷歌DeepMind團(tuán)隊(duì)研發(fā)的圍棋程序AlphaGo(阿爾法狗)。AlphaGo的勝利將深度強(qiáng)化學(xué)習(xí)推上新的熱點(diǎn)和高度,成為AI人工智能歷史上一個(gè)新的里程碑。
有必要跟大家一起探討一下AlphaGo(阿爾法狗),了解一下AlphaGo背后神奇的AI力量。
圍棋的程序設(shè)計(jì):
圍棋是一個(gè)完美的、有趣的數(shù)學(xué)問(wèn)題。
圍棋棋盤(pán)是19x19路,所以一共是361個(gè)交叉點(diǎn),每個(gè)交叉點(diǎn)有三種狀態(tài),可以用1表示黑子,-1表示白字,0表示無(wú)子,考慮到每個(gè)位置還可能有落子的時(shí)間、這個(gè)位置的氣等其他信息,可以用一個(gè)361 * n維的向量來(lái)表示一個(gè)棋盤(pán)的狀態(tài)。則把一個(gè)棋盤(pán)狀態(tài)向量記為s。
當(dāng)狀態(tài)s下,暫時(shí)不考慮無(wú)法落子的地方,可供下一步落子的空間也是361個(gè)。把下一步的落子的行動(dòng)也用361維的向量來(lái)表示記為a。
于是,設(shè)計(jì)一個(gè)圍棋人工智能的程序,就轉(zhuǎn)變?yōu)椋喝我饨o定一個(gè)s狀態(tài),尋找最好的應(yīng)對(duì)策略a,讓程序按照這個(gè)策略走,最后獲得棋盤(pán)上最大的地盤(pán)。
谷歌DeepMind的圍棋程序AlphaGo(阿爾法狗)就是基于這樣思想設(shè)計(jì)的。
AlphaGo概述:
AlphaGo(阿爾法狗)創(chuàng)新性地將深度強(qiáng)化學(xué)習(xí)DRL和蒙特卡羅樹(shù)搜索MCTS相結(jié)合, 通過(guò)價(jià)值網(wǎng)絡(luò)(value network)評(píng)估局面以減小搜索深度, 利用策略網(wǎng)絡(luò)(policy network)降低搜索寬度, 使搜索效率得到大幅提升, 勝率估算也更加精確。
MCTS必要性:
AlphaGo(阿爾法狗)系統(tǒng)中除了深度強(qiáng)化學(xué)習(xí)DRL外,為什么還需要蒙特卡羅樹(shù)搜索?
圍棋棋面總共有19 * 19 = 361個(gè)落子位置。假如計(jì)算機(jī)有足夠的計(jì)算能力,理論上來(lái)說(shuō),可以窮舉黑白雙方所有可能的落子位置,找到最優(yōu)或次優(yōu)落子策略。如果窮舉黑白雙方所有可能的落子位置,各種組合的總數(shù),大約是 250^150 數(shù)量級(jí),即圍棋的計(jì)算復(fù)雜度約為250的150次方。假如采用傳統(tǒng)的暴力搜索方式(遍歷搜索方式),用當(dāng)今世界最強(qiáng)大云計(jì)算系統(tǒng),算幾十年也算不完。按照現(xiàn)有的計(jì)算能力是遠(yuǎn)遠(yuǎn)無(wú)法解決圍棋問(wèn)題的。早期計(jì)算機(jī)圍棋軟件通過(guò)專(zhuān)家系統(tǒng)和模糊匹配縮小搜索空間, 減輕計(jì)算強(qiáng)度, 但受限于計(jì)算資源和硬件能力, 實(shí)際效果并不理想。
但是到了2006年,蒙特卡羅樹(shù)搜索的應(yīng)用標(biāo)志著計(jì)算機(jī)圍棋進(jìn)入了嶄新階段。
AlphaGo網(wǎng)絡(luò)結(jié)構(gòu):
網(wǎng)絡(luò)結(jié)構(gòu)如下圖所示:
AlphaGo系統(tǒng)組成:
AlphaGo(阿爾法狗)系統(tǒng)主要由幾個(gè)部分組成:
1.策略網(wǎng)絡(luò)(Policy Network):給定當(dāng)前圍棋局面,預(yù)測(cè)/采樣下一步的走棋。
2.快速走子(Fast rollout):目標(biāo)和策略網(wǎng)絡(luò)一樣,只不過(guò)圍棋有時(shí)間限制,需要在規(guī)定時(shí)間內(nèi)適當(dāng)犧牲走棋質(zhì)量情況下,快速落子,速度要比策略網(wǎng)絡(luò)要快1000倍。
3.價(jià)值網(wǎng)絡(luò)(Value Network):給定當(dāng)前圍棋局面,估計(jì)是白勝還是黑勝。
4.蒙特卡羅樹(shù)搜索(Monte Carlo Tree Search):不窮舉所有組合,找到最優(yōu)或次優(yōu)位置。
把以上這四個(gè)部分結(jié)合起來(lái),形成一個(gè)完整的AlphaGo(阿爾法狗)系統(tǒng)。
蒙特卡洛樹(shù)搜索 (MCTS) 是一個(gè)大框架,許多博弈AI都會(huì)采用這個(gè)框架。強(qiáng)化學(xué)習(xí)(RL)是學(xué)習(xí)方法,用來(lái)提升AI的實(shí)力。深度學(xué)習(xí)(DL)采用了深度神經(jīng)網(wǎng)絡(luò) (DNN),它是工具,用來(lái)擬合圍棋局面評(píng)估函數(shù)和策略函數(shù)的。蒙特卡洛樹(shù)搜索 (MCTS) 和強(qiáng)化學(xué)習(xí)RL讓具有自學(xué)能力、并行的圍棋博弈算法成為可能。深度學(xué)習(xí)(DL)讓量化地評(píng)估圍棋局面成為了可能。
小結(jié):
可以說(shuō) AlphaGo 最大優(yōu)勢(shì)就是它應(yīng)用了通用算法,而不是僅局限于圍棋領(lǐng)域的算法。AlphaGo勝利證明了像圍棋這樣復(fù)雜的問(wèn)題,都可以通過(guò)先進(jìn)的AI人工智能技術(shù)來(lái)解決。

發(fā)表評(píng)論
登錄
手機(jī)
驗(yàn)證碼
立即登錄即可訪(fǎng)問(wèn)所有OFweek服務(wù)
還不是會(huì)員?免費(fèi)注冊(cè)
忘記密碼請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車(chē)母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車(chē)研發(fā)中心重磅落地,寶馬家門(mén)口“搶人”
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線(xiàn)大會(huì)
-
12月18日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
推薦專(zhuān)題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 2025年8月人工智能投融資觀察
- 7 8 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 9 Manus跑路,大廠(chǎng)掉線(xiàn),只能靠DeepSeek了
- 10 地平線(xiàn)的野心:1000萬(wàn)套HSD上車(chē)