

成 就 成 就 Enabling Success

Testing on Laser/LED Safety and Solid State Lighting

Y. H. C. Kwan, Silas Hung, Vincent Chan[†]

Hong Kong Science & Technology Parks Corp.

† The Hong Kong Standard and Testing Centre

Vision

 To play a leading role for Hong Kong to become a hub for high value-adding, skill-intensive manufacturing and service industry capacities.

Missions

 To provide quality infrastructure and support facilities for innovation and technology development

Focused Clusters

- Precision Engineering (including solid state lighting)
- Electronics
- Biotechnology
- IT & Telecommunications

Eye response on different wavelengths

Wavelength (nm)	Response
<315nm	Absorbed in Cornea
(Short-Ultraviolet)	
315 to 400nm	Absorbed in Lens
(Near-Ultraviolet)	
400 to 700nm	Focused on Retina
(Visible)	
700 to 1400nm	Focused on Retina
(Near-infrared)	
>1400nm	Absorbed in Cornea
(Far-Infrared)	

Safety Measurement on laser and LED is important

History on Laser Safety

- 1958: Invention of laser by Arthur Schawlow and Charles Townes at Bell Labs
- 1962: Invention of LED by Nick Holonyak at General Electric Company
- 1974: International Electrotechnical Commission (IEC) created Technical Committee 76, to address standards relating to laser safety. This committee developed the four-class system for lasers that is the global reference
- 1993: International standard on laser safety IEC60825-1 first edition is issued by IEC

History on Laser Safety (cont'd)

- 1994: European Standard EN60825-1 is published for safety of laser products and identical to IEC60825-1
- 2001: Center for Devices and Radiological Health (CDRH) (21 CFR 1040.10 and 1040.11 in US) accepted IEC60825-1:2001
- 2007: IEC60825-1 is revised and LED is removed from this part of standards and suggested for IEC62471

IEC60825-1 is a widely used laser safety standard

IEC60825-1 Standard

Measurement geometry

For LED, CW laser diode, etc

Two conditions in IEC60825-1

Condition 1

Condition 2

 r is calculated by the angular subtense of Laser/LED for photochemical limit and thermal limit

We consider the angular subtense > 100 mrad so that r = 100mm for both limits

Electrical input in LED with red color

constant current = 20mA and warm-up time is
 1 min

Variation of Aperture Diameter at 7mm

Variation of Aperture Diameter	-1%	0	1%
Measured Optical power (W)	97.9 μW	100.1 μW	102.1 μW
Variation in Power Difference	-2.20%	0	2.00%
(Reference at 7mm)			

Power is measured at peak wavelength of 639nm

Reduced aperture diameter results in less power obtained in the detector

Electrical input in LED with red color

constant current = 20mA and warm-up time is
 1 min

Variation of Measurement Distance at 100mm

Variation of Measurement Distance	-1%	0	1%
Measured Optical power (W)	104.0 μW	103.0 μW	100.8 μW
Variation in Power Difference	0.97%	0	-2.14%
(Reference at 100mm)			

Shorter the measurement distance results in greater power

Electrical input in LED with red color

• warm-up time is 1 min

Variation of Constant Current at 20mA

Variation of Constant Current	-1%	0	1%
Measured Optical power (W)	101.9 μW	103.0 μW	104.0 μW
Variation in Power Difference	-1.07%	0	0.97%
(Reference at 20mA)			

Increase the current has larger power output in LED

Electrical input in LED with red color

• warm-up time is 1 min

Variation of constant voltage at 2.1900V

Variation of Constant Voltage	-1%	0	1%
Measured Optical power (W)	95.7 μW	105.7 μW	116.2 μW
Variation in Power Difference	-9.46%	0	9.93%
(Reference at 2.1900V)			
Variation in Current Difference	-9.22%	0	9.71%
(Reference at 2.1900V)			

Use constant current rather than constant voltage to avoid any deviation in voltage during measurement

IEC60825-1 Standard

Classification is based on

- Wavelength range
- Angular subtense
- Exposure time
- Emitted power

Classified into 4 classes by the Accessible Emission Limit (AEL) of each class

Classes	Hazards	AEL#
Class I & 1M	Safe to skin and eye	<few of="" td="" tens="" μw<=""></few>
Class 2 & 2M	Safe to skin	1mW
Class 3R	Harmful to eye	5mW
Class 3B	Harmful to eye	0.5W
Class 4	Danger to eye	>0.5W

[#] Based on CW laser in visible wavelength range

Measurement Setup of Laser/LED Safety

- Facilities in HKSTP
- Develop with HK Standard and Testing Centre (STC)

MOU Signing Ceremony

Measurement Setup

Testing of LEDs

- Facilities in HKSTP
 - Sphere with 75mm diameter

for LEDs

 Sphere with 500mm diameter
 for halogen lamps, small lamps, MR16, LED clusters, LEDs CIE127:2007

Testing of LEDs

Measurement of luminous flux Φ_{v}

- Facilities in HKSTP
 - Goniophotometer

for LEDs

obtain beam profile

Testing of LEDs

Measurement of luminous intensity I_v

- Facilities in HKSTP
 - Optical probe with test socket for 3mm/5mm packaged LEDs
 - Goniophotometer for CIE127A

CIE127B

Testing of Displays

Measurement of luminance L_v

- Facilities in HKSTP
 - Display tester
 DTS500
 for laptop screen,
 panel in automobile,
 LCD backlighting

Testing of Displays

Measurement of viewing cone

- Facilities in HKSTP
 - Display tester
 DTS500
 contour plot,
 contrast ratio,
 uniformity, etc

Summary

Measurement of Laser/LED Safety

- Study the variation of the measurement parameters
- Found that constant voltage results in the largest variation of optical power
- Should use constant current instead of constant voltage in measurement

Measurement of Solid State Lighting Testing

- Point out the equipments for luminous flux, luminous intensity, and beam profile for LEDs;
- Luminance and viewing angle measurement for displays

Thank You

Business Development and Technology Support Hong Kong Science & Technology Parks Corp.

> http://www.pal.hkstp.org canny.kwan@hkstp.org